Cooking Cryptographers: Secure Multiparty Computation Based on Balls and Bags

Daiki Miyahara1,2 Yuichi Komano3
Takaaki Mizuki1,2 Hideaki Sone1

1. Tohoku University, Email: daiki.miyahara.q4[at]alumni.tohoku.ac.jp
2. National Institute of Advanced Industrial Science and Technology (AIST)
3. Toshiba Corporation
Outline

1. Introduction: Cooking Cryptographers Problem
2. Our Proposed Protocol
3. Changing the Settings
4. Contribution
5. Conclusion
Outline

1. Introduction: Cooking Cryptographers Problem
2. Our Proposed Protocol
3. Changing the Settings
4. Contribution
5. Conclusion
What is Cooking Cryptographers Problem?

✓ Assume that Alice and Bob are cooking Borscht soup

What is Cooking Cryptographers Problem?

✓ Assume that Alice and Bob are cooking Borscht soup

✓ Prepared ingredients either paid out of pockets or funded by NFSA‡

‡ National Fictional Security Agency
What is Cooking Cryptographers Problem?

✓ Assume that Alice and Bob are cooking Borscht soup

✓ Prepared ingredients either paid out of pockets or funded by NFSA‡
✓ Respect each other’s ideology to have a relation to NFSA, but…

‡ National Fictional Security Agency
What is Cooking Cryptographers Problem?

- Assume that Alice and Bob are cooking Borscht soup

- Prepared ingredients either paid out of pockets or funded by NFSA‡
- Respect each other’s ideology to have a relation to NFSA, but…
- Wonder if they eat food funded by NFSA

‡ National Fictional Security Agency
Cooking Cryptographers Problem: Secure AND Computation

✓ They are in the kitchen, and there are the ingredients and saucepans
Cooking Cryptographers Problem: Secure AND Computation

✓ They are in the kitchen, and there are the ingredients and saucepans
✓ Each of them has their private bit:
 Funded by NFSA = 0, Paid out of pocket = 1
Cooking Cryptographers Problem: Secure AND Computation

✓ They are in the kitchen, and there are the ingredients and saucepans
✓ Each of them has their private bit:
 Funded by NFSA = 0, Paid out of pocket = 1
✓ The goal: obtain $a \land b$ without revealing any information about a and b
Cooking Cryptographers Problem: Secure AND Computation

✓ They are in the kitchen, and there are the ingredients and saucepans
✓ Each of them has their private bit:
 Funded by $\text{NFSA} = 0$, Paid out of $\text{pocket} = 1$
✓ The goal: obtain $a \land b$ without revealing any information about a and b
Outline

1. Introduction: Cooking Cryptographers Problem
2. Our Proposed Protocol
3. Changing the Settings
4. Contribution
5. Conclusion
Our Proposed Protocol Performing Secure AND Computation

1. Alice puts ingredients into saucepans depending on the value of a (so that Bob cannot see them):

 - $a=0$: Alice puts carrots in saucepans.
 - $a=1$: Alice puts nuts in saucepans.
Our Proposed Protocol Performing Secure AND Computation

2. Bob puts ingredients into saucepans depending on the value of b (so that Alice cannot see them):
Our Proposed Protocol Performing Secure AND Computation

2. Bob puts ingredients into saucepans depending on the value of b (so that Alice cannot see them):

- If $b = 0$, the position is different to Alice.
- If $b = 1$, the position is the same to Alice.
Our Proposed Protocol Performing Secure AND Computation

✓ Consider the breakdown of ingredients in the three saucepans:
Our Proposed Protocol Performing Secure AND Computation

✓ Consider the breakdown of ingredients in the three saucepans:

- $a=0/b=0$
- $a=1/b=0$
- $a=0/b=1$
- $a=1/b=1$
Our Proposed Protocol Performing Secure AND Computation

✓ Consider the breakdown of ingredients in the three saucepans:

- $a=0/b=0$
- $a=0/b=1$
- $a=1/b=0$
- $a=1/b=1$

The carrots are in the *same* saucepan.

Both paid out of *pockets*.
Our Proposed Protocol Performing Secure AND Computation

✓ Consider the breakdown of ingredients in the three saucepans:

At least one of them was funded by NFSA

The carrots are in different saucepans

\[a=0/b=0 \]

\[a=1/b=0 \]

\[a=0/b=1 \]

\[a=1/b=1 \]

The carrots are in the same saucepan

Both paid out of pockets
3. Shuffle the order of the three saucepans
3. Shuffle the order of the three saucepans
4. Enjoy eating the cooked Borscht soup:
 If there is a saucepan only with carrots, then $a \land b = 1$ (pockets);
 otherwise, $a \land b = 0$ (NFSA)
Outline

1. Introduction: Cooking Cryptographers Problem
2. Our Proposed Protocol
3. Changing the Settings
4. Contribution
5. Conclusion
Change the Settings from Kitchen to Using Balls and Bags

✓ Replace: ingredients \leftrightarrow balls, saucepans \leftrightarrow bags

Cooking every time to perform secure computations is difficult…
Change the Settings from Kitchen to Using Balls and Bags

✓ Replace: ingredients \leftrightarrow balls, saucepans \leftrightarrow bags

Cooking every time to perform secure computations is difficult…

✓ Balls and bags are easy to prepare, and they are also familiar tools for learning Probability in high school
Change the Settings from Kitchen to Using Balls and Bags

✓ It also *performs* the secure computation if we replace ingredients and saucepans with balls and bags, respectively.

The red balls are in *different* bags.
Outline

1. Introduction: Cooking Cryptographers Problem

2. Our Proposed Protocol

3. Changing the Settings

4. Contribution

5. Conclusion
Contribution: Secure computations using balls and bags

- Employ a property that the order of balls in a bag is disordered
- Extend our two-input AND to the multi-input AND
Contribution: Secure computations using balls and bags

- Employ a property that the order of balls in a bag is disordered
- Extend our two-input AND to the multi-input AND
- Formalize secure computation using balls and bags
- Construct a protocol for any Boolean function
Outline

1. Introduction: Cooking Cryptographers Problem
2. Our Proposed Protocol
3. Changing the Settings
4. Contribution
5. Conclusion
Merits of cryptographic protocols using physical objects

✓ Employ physical properties that can be intuitively understood[2]
 ✓ Correctness and security are clear even for non-experts
 ✓ The notion of secure multiparty computations can be illustrated[3,4]

Merits of cryptographic protocols using physical objects

✓ Employ physical properties that can be intuitively understood[2]
 ✓ Correctness and security are clear even for non-experts
 ✓ The notion of secure multiparty computations can be illustrated[3,4]

✓ Implement stronger cryptographic notions
 ✓ Ballot boxes can be used to implement rational secure computations[5]
 ✓ The use of envelopes is essential to realize collusion-free protocols[6]