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Abstract. Card-based cryptography performs a secure computation using a deck
of playing cards through a series of physical actions, such as shuffling a sequence
of cards. In 1989, the first card-based protocol called the five-card trick was pro-
posed to compute the two-input AND function. The five-card trick needs a prac-
tical shuffling action called a random cut only once, which shifts a sequence of
cards by a random offset. Subsequent research aimed to extend the five-card trick
to compute any Boolean function and to reduce the number of cards required to
compute it, but Mizuki, Kumamoto, and Sone in 2012 showed that the five-card
trick itself can be done with four cards. This Mizuki–Kumamoto–Sone proto-
col uses the minimal number of cards required for computing two-input Boolean
functions (as long as we encode an input bit with two cards); however, it needs a
practical step of shuffling action twice, and the question of minimizing the num-
ber of steps, particularly the number of shuffling, remains an open problem. In
this study, we negatively answer this problem; we prove that any four-card AND
protocol cannot be realized using only a single practical shuffle. This implies that
the Mizuki–Kumamoto–Sone protocol utilizes the minimal number of practical
shuffles. For this, we enumerate all possible practical shuffles and prove that ap-
plying any one of them only once either cannot compute the AND function or
leak information about the input.

Keywords: Card-based cryptography · Secure computation · Logical AND func-
tion · Impossibility proof

1 Introduction

Card-based cryptography enables a secure computation using a deck of physical cards.
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in 1989 [3]. Given a, b ∈ {0, 1}, this protocol computes a ∧ b without leaking any infor-
mation about a, b. In this setting, we use a deck consisting of two colors: black ♣ and
red ♡ , with identical backs ? . Boolean values are encoded based on the arrangement
of one black and one red card, as follows:

♣ ♡ = 0, ♡ ♣ = 1. (1)

This pair is called a commitment to x if it represents the value of a bit x ∈ {0, 1}. The
five-card trick requires two input commitments to a, b along with one helping card ♡ :

? ?︸︷︷︸
a

? ?︸︷︷︸
b

♡ → · · · → a ∧ b.

Here, the first four cards denote the commitments to a, b. The five-card trick is called
a non-committed format protocol, because the output in the five-card trick is not in the
form of a commitment. A protocol is in committed format if it outputs a commitment to
a desired value.

1.1 Mizuki–Kumamoto–Sone AND protocol

In 2012, Mizuki, Kumamoto, and Sone [10] showed that the five-card trick [3] can
be done with four cards, i.e., they proposed a four-card non-committed format AND
protocol, which needs no helping card. We call this protocol the MKS protocol in short.

? ?︸︷︷︸
a

? ?︸︷︷︸
b

→ · · · → a ∧ b.

Clearly, this protocol uses the minimal number of cards as long as we follow the en-
coding rule in Eq. (1), because it only uses two input commitments. The MKS protocol
proceeds as follows.

1. Apply a random bisection cut, which bisects the sequence and randomly swaps the
two halves and is denoted by [· · · | · · · ] as follows:[

? ?
∣∣∣ ? ?

]
→ ? ? ? ? .

2. Apply a random cut to the middle two cards, which applies a random cyclic shift
to the sequence and is denoted by ⟨· · · ⟩ as follows:

?
〈

? ?
〉

? → ? ? ? ? .

3. Reveal the second card;
(a) if it is ♣ , then reveal the forth to obtain the value of a ∧ b as follows:

? ? ? ? →

 ? ♣ ? ♡ if a ∧ b = 0,
? ♣ ? ♣ if a ∧ b = 1.
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Table 1: Sequences of cards in the MKS protocol [10]
(a, b) Initial sequence After step 2 After step 3

(1, 1) ♡ ♣ ♡ ♣ ♡ ♣ ♡ ♣ or ♡ ♡ ♣ ♣ ? ♣ ? ♣ or ♡ ♡ ? ?
(0, 0) ♣ ♡ ♣ ♡ ♣ ♣ ♡ ♡ or ♣ ♡ ♣ ♡ ? ♣ ? ♡ or ♣ ♡ ? ?
(0, 1) ♣ ♡ ♡ ♣ ♡ ♣ ♣ ♡ or ♣ ♡ ♡ ♣ ? ♣ ? ♡ or ♣ ♡ ? ?
(1, 0) ♡ ♣ ♣ ♡ ♡ ♣ ♣ ♡ or ♣ ♡ ♡ ♣ ? ♣ ? ♡ or ♣ ♡ ? ?

(b) if it is ♡ , reveal the first:

? ? ? ? →

 ♣ ♡ ? ? if a ∧ b = 0,
♡ ♡ ? ? if a ∧ b = 1.

See Table 1 to show the correctness and the security: The initial sequence has four pos-
sibilities, which have a one-to-one correspondence with the four input values. Through
the application of a random bisection cut and a random cut in steps 1 and 2 respec-
tively, each of the four possible sequences is randomized as shown in the third column.
For example, the initial sequence ♡ ♣ ♡ ♣ when (a, b) = (1, 1) is randomized into
the two sequences of ♡ ♣ ♡ ♣ and ♡ ♡ ♣ ♣ with equal probability, because the two
middle cards are swapped randomly. Note that for each input, the initial sequence is
randomized into exactly two sequences with equal probability. Note furthermore that
these actions are performed with all the cards facing down, and hence, no information
about the input value is leaked. After step 3, observe that only the case of (a, b) = (1, 1)
differs from the other three input cases, regardless of whether the color of the second
card revealed is red or black. Moreover, the other three input cases are indistinguishable
from the colors that appeared. For these reasons, the MKS protocol can determine a∧ b
and leaks no further information.

1.2 Motivation

The number of cards in the MKS protocol [10] is optimal with respect to the encod-
ing scheme because four cards are needed to input two bits. To discuss the number of
shuffles in the MKS protocol, we need to give a formal definition of shuffles.

Let S n denote the symmetric group on degree n ∈ N. A shuffle acted on a sequence
of n cards is defined as a pair of a permutation set Π ⊆ S n and a probability distribu-
tion F on Π , and is denoted by (shuf, Π,F ) [11]. By applying a shuffle (shuf, Π,F )
to a sequence of n cards, a permutation π is drawn from Π according to F and the
sequence is rearranged by the chosen permutation π. Here, the chosen permutation π
is hidden from all parties, and only Π and F are public information in the shuffle. A
shuffle (shuf, Π,F ) is called uniform if F is a uniform distribution over Π , closed if Π
forms a group under composition of permutations, and uniform closed if it is uniform
and closed. When (shuf, Π,F ) is uniform (or uniform closed), we omit F and denote
it as (shuf, Π). Since all easy-to-implement shuffles (e.g., random cuts, random bisec-
tion cuts, pile-shifting shuffles, and pile-scramble shuffles) in the literature are uniform
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closed, it is considered to be the necessary condition for shuffles to be practical. Indeed,
there are various methods [4,7,8,14] to implement uniform closed shuffles physically5.

Following this formalization, the shuffling actions in steps 1 and 2 in the MKS
protocol are denoted by (shuf, {id, (1 3)(2 4)}) and (shuf, {id, (2 3)}), respectively, where
id denotes the identity permutation and a probability distribution is omitted when it is
uniform. In this formalization, one can observe that the two shuffling actions above can
be described as a single action [11], as follows:

(shuf, {id, (1 3)(2 4), (2 3), (1 3 2 4)}), (2)

because they are acted sequentially. However, this action is not considered practical be-
cause the permutation set {id, (1 3)(2 4), (2 3), (1 3 2 4)} does not form a group. In sum-
mary, the MKS protocol uses two practical shuffles, and it can be viewed as a protocol
with a single non-closed shuffle.

A natural question is stated as: Is it possible to construct a four-card AND protocol
with a single practical (i.e., uniform closed) shuffle (shuf, Π)?

1.3 Contributions

In this study, we present a negative answer to the above problem, which is summarized
in the following theorem.

Theorem 1. Any four-card non-committed format AND protocol cannot be realized
using only one practical shuffle.

This result implies that the two practical shuffles used in the MKS protocol [10] con-
stitute the minimal requirement to perform a secure computation. To establish this, we
enumerate all practical shuffles and show that any single shuffle either fails to com-
pute the logical AND function correctly or leaks information about the inputs (and thus
needs an additional shuffle as in the MKS protocol).

Our approach leverages a state tree proposed by Koch et al. [8], which formalizes the
transition of the “actual” sequence of cards during the execution of a protocol, similar to
the transition shown in Table 1. We enumerate all closed shuffles for a sequence of four
cards and show that there are 30 subgroups in S 4, say Gi ⊆ S 4 for 1 ≤ i ≤ 30, as shown
later. Our impossibility proof using a state tree shows that any “output state” cannot
be derived if we apply any uniform closed shuffle (shuf,Gi) to the “start state” only
once. In the proof, we do not depict a state tree for every case of applying (shuf,Gi),
but employ the subset and conjugacy relation among Gi to reduce the number of cases,
allowing us to simplify the proof. Then we extend the impossibility proof to the case of
(shuf,Gi,Fi) for any probability distribution Fi on Gi, i.e., non-uniform closed shuffles.

5 Koch et al. [8] showed that any uniform closed shuffle can be implemented by the use of
private permutations, which apply a permutation covertly. Koch [7] showed that any uniform
closed shuffle can be implemented from pile-shifting shuffles. Shinagawa et al. [14] showed
that (possibly any) uniform closed shuffle can be implemented by cyclic shuffles, based on
group-theoretic factorization [4].
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Table 2: The minimum number of cards required for committed format AND protocols
Cards Finite Runtime Uniform Closed

Mizuki–Sone [12] 6 ✓ ✓ ✓
Koch et al. [8] 4 ✓
Koch et al. [8] 5 ✓
Abe et al. [1] 5 ✓ ✓
Koch [6] & R.–I. [13] 4 ✓
Koch [6] & R.–I. [13] 5 ✓ ✓

1.4 Related Work

Both committed- and non-committed-format AND protocols have a long history of im-
provements. We summarize the history for committed format ones in Table 2. As in-
troduced above, Koch et al. [8] classified shuffles based on two elements: uniform and
closed. They then proved that no four-card AND protocol exists that terminates within
a finite runtime regardless of shuffles used, meaning that a finite runtime AND protocol
requires at least five cards. They also proposed two protocols: one is a four-card Las Ve-
gas protocol using a closed shuffle, and the other is a five-card finite-runtime protocol
using a non-uniform non-closed shuffle. Building on this perspective, Kastner et al. [5]
focused on the shuffle classification and proved the following two results:

– No five-card finite-runtime AND protocol exists using only closed shuffles. This
result implies that a six-card finite-runtime AND protocol proposed by Mizuki and
Sone [12] with the use of a random bisection cut uses the minimal number of cards.
This also implies that Koch et al.’s five-card finite-runtime protocol uses the min-
imal number of cards. However, the case of using only uniform shuffles remains
unknown.

– No four-card AND protocol exists using only uniform and closed shuffles. This
result implies that Koch et al.’s four-card Las Vegas protocol uses the minimal
number of cards. However, the construction of a five-card AND protocol using
only uniform closed shuffles remains unknown.

These open problems were soon positively resolved; In 2018, Abe et al. [1] proposed
a five-card Las Vegas protocol using uniform closed shuffles. Regarding the other open
problem concerning uniform shuffles, Koch [6] and Ruangwises and Itoh [13] inde-
pendently devised both a four-card Las Vegas protocol and a five-card finite-runtime
protocol using only uniform shuffles. These existing studies have clarified the trade-off
between the type of shuffling actions and the number of cards required in commitment
format AND protocols. More recently, protocols have been developed by restricting
shuffle actions to only random cuts (cf. [2, 9, 16]). However, the minimal number of
shuffles in (non-)committed format AND protocols remains unsolved.

2 Preliminaries

In this section, we introduce a computational model for card-based cryptographic pro-
tocols. We use this model to prove our result in a rigorous way.
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2.1 Model of Card-Based Protocols

In this paper, we deal with the Mizuki–Shizuya model [11] as a model for card-based
protocols. Let D be a non-empty finite multiset not containing the back symbol ?, and
call it a deck. The number of elements inD, d = |D|, is called the number of cards.

For c ∈ D, c
? denotes a face-up card and ?

c denotes a face-down card. A face-up or
face-down card is also called a lying card. We define atom( c

? ) B c and atom( ?
c ) B c

to denote an atomic card. The surface of the lying card is defined as top
(

c
?

)
B c and

top
(

?
c

)
B ?. A sequence of lying cards Γ = (α1, α2, · · · , αd) is called a sequence of

the deck D, if it satisfies [atom(α1), atom(α2), . . . , atom(αd)] = D. Denote the set of
all sequences in a deck D as SeqD. We define the visible sequence vis(Γ) of the card
sequence Γ = (α1, α2, . . . , αd) as follow:

vis ((α1, α2, . . . , αd)) B (top (α1) , top (α2) , . . . , top (αd)) .

Denote the set of all visible sequences in a deckD as VisD B {vis(Γ)| Γ ∈ SeqD}.
Let us define an action swap to be swap

(
c
?

)
B ?

c and swap
(

?
c

)
B c

? . For Γ =
(α1, α2, . . . , αd), the action of turning over the lying cards at the position specified by
the set T ⊆ {1, 2, . . . , d} is called a turn action. The turn action turnT (·) is defined as
follows:

turnT ((α1, α2, . . . , αd)) B (β1, β2, . . . , βd)

such that

βi =

swap(αi) if i ∈ T ;
αi otherwise.

For Γ = (α1, α2, . . . , αd), the action of rearranging the lying cards based on the
permutation π ∈ S d is called the permutation action. The permutation action permπ(·)
is defined as follows:

permπ((α1, α2, . . . , αd)) B (απ−1(1), απ−1(2), . . . , απ−1(d)).

For Γ = (α1, α2, . . . , αd), based on the the pair (Π,F ) (permutation set Π ⊆ S d and
the probability distribution F on Π), the action of applying the permutation Π ⊆ S d

chosen with probability distribution F for the lying cards is called shuffle action. The
shuffle action shufΠ,F (·) is defined as follows:

shufΠ,F ((α1, α2, . . . , αd)) B permπ((α1, α2, . . . , αd)).

Here, π ∈ Π is a permutation chosen randomly following F . Then, we define SPd as
the entire set (Π,F ) of permutation sets Π and probability distributions F on Π .

A card-based protocol is defined by the quadruple P = (D,U,Q, A):

– D is a deck;
– U ⊆ SeqD is an input set;
– Q is a state set containing initial state q0 and final state q f ;
– A : (Q \ {q f }) × VisD → Q × (2{1,2,...,d} ∪ S d ∪ SPd) is an action function.
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In the Mizuki–Kumamoto–Sone AND protocol [10], D = [♣,♣,♡,♡], and d = 4, U ={
( ?
♣
, ?
♡
, ?
♣
, ?
♡

), ( ?
♣
, ?
♡
, ?
♡
, ?
♣

), ( ?
♡
, ?
♣
, ?
♣
, ?
♡

), ( ?
♡
, ?
♣
, ?
♡
, ?
♣

)
}
. The action function takes as input

the current state q of the protocol and the visible sequence vis(Γ) and returns the next
state q′ and the next action. The next actions are the turn action turn, the permutation
action perm, and the shuffle action shuf, each of which outputs as follows.

– A(q, vis(Γ)) = (q′,T ∈ 2{1,2,...,d}) : turnT (Γ);
– A(q, vis(Γ)) = (q′, π ∈ S d) : permπ(Γ);
– A(q, vis(Γ)) = (q′, (Π,F ) ∈ SPd) : shufΠ,F (Γ).

For instance, the action function of the first step of the Mizuki–Kumamoto–Sone AND
protocol is A(q0, (?, ?, ?, ?)) = (q1, ({id, (1 3)(2 4)} ,F )) (but F is the uniform distri-
bution) and (shuf, {id, (1 3)(2 4)}) is to be applied. Thus, the card-based protocol is to
perform one of the following actions on lying cards from the initial state: turn action
turn, permutation action perm, or shuffle action shuf, until the final state. In addition
to the card-based protocol in this sense, for non-committed format protocols, there is a
defined function that determines the output value from the entire history of the visible
sequence from the initial state to the final state.

2.2 KWH-tree

A state tree proposed by Koch, Walzer, and Härtel [8] is called the KWH-tree and is
useful to show a card-based protocol visually. Figure 1 depicts the KWH-tree for the
MKS protocol [10].

Let us introduce how the KWH-tree works using Fig. 1. Each “box” from the top
to the bottom is called a state, in which every possible sequence of symbols6 (left)
is mapped to a probability (right), where Xab denotes a random variable for the input
value being (a, b) ∈ {0, 1}2, and each probability associated with a sequence of symbols
represents a probability that the atomic sequence of the current sequence placed on the
table is exactly that sequence. Note that X11 + X10 + X01 + X00 = 1. For example, the
topmost state means that a probability of the initial sequence being ♡♣♡♣ is X11, ♡♣♣♡
is X10, ♣♡♡♣ is X01, and ♣♡♣♡ is X00. The transition of a state corresponds to the visible
sequence trace in the protocol, and each state is transformed into its subsequent state(s)
according to directed edge(s) annotated with a unique action that is specified in the
protocol for that situation. Thus, permutation and shuffle actions always lead to a single
state, but any turn action results in multiple states depending on the symbol appeared,
i.e., ♡ or ♣.

More formally, a state for a four-card protocol is a map µ : S → P where S is a set
of all possible sequences of four symbols

S B {♡♣♡♣,♣♡♣♡,♡♡♣♣,♣♣♡♡,♡♣♣♡,♣♡♡♣},

and P is a set of homogeneous polynomials of degree 1 with non-negative coefficients

P B {p11X11 + p10X10 + p01X01 + p00X00 | pxy ≥ 0}.

6 Here, a sequence of symbols rather than cards is employed for simplicity.
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♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ X11

♡♣♣♡ 1/2X10 + 1/2X01

♣♡♡♣ 1/2X10 + 1/2X01

♣♡♣♡ X00

♡♣♡♣ 1/2X11

♡♡♣♣ 1/2X11

♡♣♣♡ 1/2X10 + 1/2X01

♣♡♡♣ 1/2X10 + 1/2X01

♣♡♣♡ 1/2X00

♣♣♡♡ 1/2X00

♡♣♡♣ 1/2X11

♡♣♣♡ 1/2X01 + 1/2X10

♣♣♡♡ 1/2X00

♡♡♣♣ 1/2X11

♣♡♡♣ 1/2X10 + 1/2X01

♣♡♣♡ 1/2X00

♡♣♣♡ 1/2X01 + 1/2X10

♣♣♡♡ 1/2X00

♡♣♡♣ 1/2X11 ♣♡♡♣ 1/2X10 + 1/2X01

♣♡♣♡ 1/2X00

♡♡♣♣ 1/2X11

(shuf, {id, (1 3)(2 4)})

(shuf, {id, (2 3)})

(turn, {2})

?♣?? ?♡??

(turn, {4})

?♣?♡ ?♣?♣

(turn, {1})

♣♡??♡♡??

Fig. 1: The KWH-tree [8] for the Mizuki–Kumamoto–Sone AND protocol [10]

For example, the start state µs shown in Fig. 1 is a unique state and is described as
follows:

µs(♡♣♡♣) = X11,
µs(♡♣♣♡) = X10,
µs(♣♡♡♣) = X01,
µs(♣♡♣♡) = X00.

(3)

Note that µs(♣♣♡♡) = µs(♡♡♣♣) = 0. In particular, for a non-committed format AND
protocol, the security of the protocol means that when the output value is 0, it must be
indistinguishable whether the input value is (0,0), (0,1), or (1,0). This implies that some
non-negative real numbers 0 ≤ p0, p1 ≤ 1 with either p0 , 0 or p1 , 0 exist for the
state µ such that ∑

s∈S

µ(s) = p1X11 + p0(X00 + X10 + X01). (4)
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Here, the part of the equation p0(X00+X10+X01) implies that each coefficient of X00, X01,
and X10 is the same, i.e., the protocol leaks no information about whether the input value
is (0, 0), (0, 1), or (1, 0). Note that Eq. (4) is the necessary and sufficient condition of
the security; thus, every secure non-committed format protocol satisfies it in all states.7

2.3 Turnability for a State

Kastner et al. [5] introduced the turnability for a state µ, which defines the condition
for not leaking information when applying a turn action to a state. Formally, for a non-
committed format AND protocol ([♣,♣,♡,♡],U,Q, A), we say that µ is turnable for
i ∈ {1, 2, 3, 4} if for any c ∈ {♡,♣}, there exists non-negative real numbers 0 ≤ p0, p1 ≤ 1
with either p0 , 0 or p1 , 0 such that:∑

s∈S ,s[i]=c

µ(s) = p1X11 + p0(X00 + X10 + X01), (5)

where i denotes the position of a sequence s and s[i] denotes the i-th symbol of s. In
other words, a state µ is turnable for i if both of its subsequent states satisfy Eq. (4)
when (turn, i) is applied to µ; a state µ is not turnable for i if (turn, i) leaks information
about the input.

2.4 ⊥-Sequence

As seen in Fig. 1, any non-committed format AND protocol finally reaches a state µ
such that either

∑
s∈S µ(s) = p1X11 or

∑
s∈S µ(s) = p0(X00 + X10 + X01) for some real

numbers 0 < p0, p1 ≤ 1. Such a state is called a final state, and if a protocol reaches
the former (resp. latter) state, it means that the output value is 1 (resp. 0). From this
viewpoint, a non-committed format AND protocol can be regarded as a mechanism to
split a variable X11 with X00, X10, and X01. If a protocol violates this, i.e., there is a state
µ and a sequence s ∈ S such that

µ(s) =
∑
i, j

pi jXi j (p11 > 0, p00 + p10 + p01 > 0), (6)

then the protocol can no longer split the variable X11 with X00, X10, and X01, making it
impossible to terminate correctly. Such a sequence s ∈ S satisfying Eq. (6) is called a
⊥-sequence (for a state µ). Note that a correct protocol never has a ⊥-sequence.

3 Impossibility Proof

In this section, we prove Theorem 1, i.e., it is impossible to construct a four-card AND
protocol using only one practical (i.e., uniform closed) shuffle.

First, constructing an AND protocol without the use of any shuffle (i.e., the number
of shuffles is zero) is impossible. This is because the start state is not turnable for any

7 For a committed format AND protocol, Eq. (4) along with p0 = p1 is the necessary and
sufficient condition of the security, i.e., the coefficient of Xab is the same for all (a, b) ∈ {0, 1}2.
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i ∈ {1, 2, 3, 4} according to Eq. (5), and a state µ obtained by just applying (perm, π)
(for any π ∈ S 4) to the start state is also not turnable for any i ∈ {1, 2, 3, 4} because π is
a bijective function. Thus, any AND protocol must have at least one shuffle.

Now we consider whether an AND protocol can be constructed by using one prac-
tical shuffle. We first claim that any protocol with having permutation actions can be
converted into another protocol (computing the same function) without permutation
actions as follows. If (perm, π) is applied before the shuffle action (shuf,G), this is
equivalent to applying a uniform closed shuffle (shuf,G′) such that G′ B π−1Gπ,
i.e., G′ is conjugate to G, and then applying (perm, π). If (perm, π) is applied be-
fore the turn action (turn, {t1, . . . , tk}), this is equivalent to applying just a turn action
(turn, {π−1(t1), . . . , π−1(tk)}). Therefore, it suffices to consider the following protocol for
an arbitrary group G and an arbitrary set T ⊆ {1, 2, 3, 4}:

1. Apply a uniform closed shuffle (shuf,G).
2. Apply a turn action (turn,T ).

As described in Sect. 1, we examine all 30 subgroups of the symmetric group S 4,
say Gi for 1 ≤ i ≤ 30 as listed in Table 3, and show that every state after (shuf,Gi)
is applied to the start state either does not satisfy the turnability in Eq. (5) or produces
a ⊥-sequence in Eq. (6). Let µ′i be a state after (shuf,Gi) is applied to the start state
for 1 ≤ i ≤ 30. Among these, µ′1 can be immediately rejected, as it leads to a protocol
equivalent to the case with no shuffling. In the next two subsections, we examine the
remaining 29 groups as follows.

– Section 3.1 deals with the five groups of G3, G4, G5, G6, and G9, where any ⊥-
sequence does not arise. Our approach shows that, for such groups, none of the five
resulting states is turnable for any i ∈ {1, 2, 3, 4}.

– Section 3.2 deals with the remaining groups, in which we show that a ⊥-sequence
appears in every resulting state.

3.1 Shuffles Not Producing ⊥-Sequences

Let us consider the five shuffles using G3,G4,G5,G6, and G9 listed in Table 3. First,
note that G5 and G6 are symmetric to G4 and G3 with respect to the order of the two
inputs, respectively, and hence, G5 and G6 yield the same results; the output of ap-
plying (shuf,G3) to the two input commitments to a, b, is identical to that of applying
(shuf,G6) to the case when the two commitments are swapped beforehand, i.e., b, a, for
instance. Therefore, we omit the cases for G5 and G6 and prove only the cases for G3,
G4, and G9.

Figure 2 depicts the KWH-trees when each of (shuf,G3), (shuf,G4), (shuf,G9) is
applied to the start state. Here, no ⊥-sequence is produced, since there exists no s ∈ S
satisfying Eq. (6). However, according to Eq. (5), none of the three resulting states is
turnable for any i ∈ {1, 2, 3, 4}. More precisely, when (shuf,G3) is applied to the start
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Table 3: List of all the 30 subgroups of the symmetric group S 4

Group Elements of group Group Elements of group
G1 {id} G11 {id, (1 2 3), (1 3 2)}
G2 {id, (1 2)} G12 {id, (1 2 4), (1 4 2)}
G3 {id, (1 3)} G13 {id, (1 3 4), (1 4 3)}
G4 {id, (1 4)} G14 {id, (2 3 4), (2 4 3)}
G5 {id, (2 3)} G15 {id, (1 2)(3 4), (1 3 2 4), (1 4 2 3)}
G6 {id, (2 4)} G16 {id, (1 3)(2 4), (1 2 3 4), (1 4 3 2)}
G7 {id, (3 4)} G17 {id, (1 4)(2 3), (1 2 4 3), (1 3 4 2)}
G8 {id, (1 2)(3 4)} G18 {id, (1 2), (3 4), (1 2 3 4)}
G9 {id, (1 3)(2 4)} G19 {id, (1 3), (2 4), (1 3 2 4)}
G10 {id, (1 4)(2 3)} G20 {id, (1 4), (2 3), (1 4 2 3)}

Group Elements of group
G21 {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
G22 {id, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}
G23 {id, (1 2 4), (1 4 2), (1 2), (1 4), (2 4)}
G24 {id, (1 3 4), (1 4 3), (1 3), (1 4), (3 4)}
G25 {id, (2 3 4), (2 4 3), (2 3), (2 4), (3 4)}
G26 {id, (3 4), (1 2), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3)}
G27 {id, (2 3), (1 4), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3 4), (1 4 3 2)}
G28 {id, (2 4), (1 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3), (1 2 3 4), (1 4 3 2)}
G29 All even permutations (i.e., G29 is the alternating group A4)
G30 All permutations (i.e., G30 is the symmetric group S 4)

state, the resulting state µ′3 is not turnable for any i as shown below.

∑
s∈S ,s[i]=♡

µ′3(s) =


X11 + 1/2(X01 + X10) + 0(X00) for i = 1,
0(X11) + 1/2(X01 + X10) + X00 for i = 2,
X11 + 1/2(X01 + X10) + 0(X00) for i = 3,
0(X11) + 1/2(X01 + X10) + X00 for i = 4.

Observe that in each equation, the coefficient of X00 differs from those of X01 and X10;
thus, it does not satisfy Eq. (5), indicating that µ′3 is not turnable. Similarly, in both µ′4
and µ′9, we observe that the coefficient of X00 differ to those of X10 and X01 as shown
in Fig. 2, i.e., they are not turnable. Therefore, we have proved the impossibility of
constructing an AND protocol using G3, G4, G5, G6, and G9.

3.2 Shuffles Producing ⊥-Sequences

We now verify the remaining cases, i.e., the shuffles other than the five shuffles dis-
cussed in the previous section, which produce a ⊥-sequence. First, we examine G2 and
G7. Figure 3 depicts the KWH-tree for the case where (shuf,G2) is applied to the start
state. Here, we can observe that the sequence ♡♣♡♣ is a ⊥-sequence because it satisfies
Eq. (6):

µ′2(♡♣♡♣) = 1/2X11 + 1/2X01.
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♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ X11

♡♣♣♡ 1/2X10

♣♣♡♡ 1/2X10

♡♡♣♣ 1/2X01

♣♡♡♣ 1/2X01

♣♡♣♡ X00

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ 1/2X11

♣♣♡♡ 1/2X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ 1/2X00

♡♡♣♣ 1/2X00

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ X11

♡♣♣♡ 1/2X10 + 1/2X01

♣♡♡♣ 1/2X10 + 1/2X01

♣♡♣♡ X00

(shuf,G3) (shuf,G4) (shuf,G9)

Fig. 2: The KWH-trees when each of (shuf,G3), (shuf,G4), and (shuf,G9) is applied to
the start state

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ 1/2X11 + 1/2X01

♣♡♡♣ 1/2X11 + 1/2X01

♡♣♣♡ 1/2X10 + 1/2X00

♣♡♣♡ 1/2X10 + 1/2X00

(shuf,G2)

Fig. 3: The KWH-tree constructed with G2

That is, µ′2(♡♣♡♣) contains both X11 and X01, i.e., both the sum of coefficients of X10,
X01, and X00 and that of X11 are greater than 0. The same holds for G7 since G2 and G7
are symmetric with respect to the order of the two inputs, as discussed in Sect. 3.1.

From Table 3, it can be seen that G2 is a subgroup of G18:

G2 = {id, (1 2)} ⊆ G18 = {id, (1 2), (3 4), (1 2 3 4)}.

More generally, G2 and G7 are subgroups of the following groups:

G2 = G18 ∩G22 ∩G23 ∩G26 ∩G30,

G7 = G18 ∩G24 ∩G25 ∩G26 ∩G30.

Since both G2 and G7 produce a ⊥-sequence, as shown above, any group that contains
them, i.e., G18, G22, G23, G24, G25, G26, and G30, must also produce a ⊥-sequence.

Let us move on to G11,G12,G13, and G14. Since G11 and G12 are symmetric to G14
and G13, respectively, we consider G11 and G12, as depicted in Fig. 4. Here, ♡♣♡♣ is a
⊥-sequence, i.e.,

µ′11(♡♣♡♣) = 1/3X11 + 1/3X01,

µ′12(♡♣♡♣) = 1/3X11 + 1/3X01.
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♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ 1/3X11 + 1/3X01

♡♡♣♣ 1/3X11 + 1/3X01

♣♡♡♣ 1/3X11 + 1/3X01

♡♣♣♡ 1/3X10 + 1/3X00

♣♣♡♡ 1/3X10 + 1/3X00

♣♡♣♡ 1/3X10 + 1/3X00

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ 1/3X11 + 1/3X01

♣♣♡♡ 1/3X11 + 1/3X01

♣♡♡♣ 1/3X11 + 1/3X01

♡♣♣♡ 1/3X10 + 1/3X00

♡♡♣♣ 1/3X10 + 1/3X00

♣♡♣♡ 1/3X10 + 1/3X00

(shuf,G11) (shuf,G12)

Fig. 4: The KWH-trees when each of (shuf,G11) and (shuf,G12) is applied to the start
state

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ 1/2X11 + 1/2X00

♣♡♡♣ 1/2X10 + 1/2X01

♡♣♣♡ 1/2X10 + 1/2X01

♣♡♣♡ 1/2X11 + 1/2X00

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ 1/2X11 + 1/2X00

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ 1/2X11 + 1/2X00

(shuf,G8) (shuf,G10)

Fig. 5: The KWH-trees when each of (shuf,G8) and (shuf,G10) is applied to the start
state

Therefore, this demonstrates the impossibility for G11 and G12, and likewise for G13
and G14.

Regarding G8 and G10 shown in Fig. 5, both produce a ⊥-sequence, as can be seen
from the following equations:

µ′8(♡♣♡♣) = 1/2X11 + 1/2X00,

µ′10(♡♣♡♣) = 1/2X11 + 1/2X00.

Moreover, G8 and G10 are subgroups of the following groups:

G8 = G15 ∩G21 ∩G27 ∩G28 ∩G29,

G10 = G17 ∩G21 ∩G27 ∩G28 ∩G29.

Since both G8 and G10 produce a ⊥-sequence, it follows that these six groups, i.e., G15,
G17, G21, G27, G28, and G29, also produce a ⊥-sequence. Therefore, we have confirmed
the impossibility for all of these eight groups.
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♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ 1/2X11 + 1/4X01 + 1/4X00

♡♣♣♡ 1/4X11 + 1/4X10 + 1/4X01

♣♡♣♡ 1/4X11 + 1/4X10 + 1/2X00

♡♡♣♣ 1/4X10

♣♡♡♣ 1/4X10 + 1/4X01 + 1/4X00

♣♣♡♡ 1/4X01

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ 3/4X11 + 1/4X10

♣♡♡♣ 1/4X11 + 1/4X01

♡♣♣♡ 1/4X11 + 1/4X00

♡♡♣♣ 1/4X10 + 1/4X01

♣♣♡♡ 1/4X10 + 1/4X01

♣♡♣♡ 1/4X01 + 1/4X00

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ 1/4X11 + 1/4X01

♡♡♣♣ 1/4X11 + 1/4X00

♡♣♣♡ 1/4X11 + 3/4X10

♣♣♡♡ 1/4X11 + 1/4X00

♣♡♣♡ 1/4X10 + 1/4X00

♣♡♡♣ 3/4X01 + 1/4X00

(shuf,G16) (shuf,G19) (shuf,G20)

Fig. 6: The KWH-trees when each of (shuf,G16), (shuf,G19), and (shuf,G20) is applied
to the start state

Lastly, as shown in Fig. 6, the cases of G16, G19, and G20 also produce a⊥-sequence:

µ′16(♡♣♡♣) = 1/2X11 + 1/4X01 + 1/4X00,

µ′19(♡♣♡♣) = 3/4X11 + 1/4X10,

µ′20(♡♣♡♣) = 1/4X11 + 1/4X00.

Thus, we have confirmed the case of (shuf,Gi) for all i, which proves Theorem 1.

3.3 Extension to Closed Shuffles

The impossibility proof presented in the previous sections can be extended to the case
of using a single closed shuffle instead of a single uniform closed shuffle. This result is
formalized in the following theorem.

Theorem 2. Any four-card non-committed format AND protocol cannot be realized
using only a single non-uniform closed shuffle.

Proof. The proof for non-uniform closed shuffles is similar to that for uniform closed
shuffles, i.e., we show that after applying (shuf,Gi,Fi) for each 1 ≤ i ≤ 30 and any
probability distribution Fi on Gi, the resulting state is either not turnable or contains a
⊥-sequence. Here, a ⊥-sequence arises independently of the distribution of Fi as shown
in Sect. 3.2, and hence, we focus on the five groups of G3, G4, G5, G6, and G9, as listed
in Sect. 3.1. For any real number p ∈ R such that 0 < p < 1, let F3 denote a probability
distribution on G3 such that:

F3 : id 7→ p, (1 3) 7→ 1 − p,

and F4 and F9 are defined analogously. Figure 7 depicts the KWH-tree when each of
(shuf,G3,F3), (shuf,G4,F4), and (shuf,G9,F9) is applied. Here, all of the three states
are not clearly turnable according to Eq. (5), because the coefficient of X00 differs from
those of X10 and X01 in every state. Since we can omit the cases for G5 and G6 due
to the symmetry of the order of two inputs as discussed in Sect. 3.1, this proves the
impossibility for the case of closed shuffles. ⊓⊔
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♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ X11

♡♣♣♡ pX10

♣♣♡♡ (1 − p)X10

♡♡♣♣ (1 − p)X01

♣♡♡♣ pX01

♣♡♣♡ X00

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ pX11

♣♣♡♡ (1 − p)X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ pX00

♡♡♣♣ (1 − p)X00

♡♣♡♣ X11

♡♣♣♡ X10

♣♡♡♣ X01

♣♡♣♡ X00

♡♣♡♣ X11

♡♣♣♡ pX10 + (1 − p)X01

♣♡♡♣ (1 − p)X10 + pX01

♣♡♣♡ X00

(shuf,G3,F3) (shuf,G4,F4) (shuf,G9,F9)

Fig. 7: The KWH-trees when each of non-uniform closed shuffles corresponding to G3,
G4, and G9 is applied to the start state, where p is a real number such that 0 < p < 1.

4 Concluding Remarks

In this study, we proved the impossibility of constructing any four-card non-committed
format AND protocol when only a single application of a uniform closed shuffle, i.e.,
practical shuffle, is allowed. The proof classifies all possible shuffle actions into two
categories: those that generate a ⊥-sequence and those that result in a state which is
not turnable. Additionally, our proof employs the KWH-tree [8] to verify each case
rigorously. Our result implies that the two-shuffle AND protocol proposed by Mizuki–
Kumamoto–Sone [10] achieves the minimum number of shuffles.

Several problems regarding the minimal number of shuffles remain unsolved. We
leave them as open problems, as follows.

– Six-card committed-format AND/XOR protocols using a random cut twice are
known [2,16]. Whether there exists such a protocol using only a single random cut
remains open. Recall that there is no five-card finite-runtime AND protocol using
only closed shuffles [5], though a protocol for computing XOR might be possible.

– There is a six-card non-committed-format protocol for computing the three-input
majority function using each of a random cut and a random bisection cut (i.e., twice
in total) [15]. Note that these two shuffles are acted sequentially, and hence, they
can be described as a single action, as in the MKS protocol [10]. Whether there
exists such a protocol using only a single uniform closed shuffle remains open.
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